
Recommendation System Using Collaborative filtering

Asim Osman 1

Abstract
This project presents the development of a col-
laborative filtering-based recommender system
using Alternating Least Squares (ALS), with la-
tent factor embeddings for users, movies along-
side with their biases. Also, we address the cold
start problem and improve recommendation ac-
curacy by incorporating feature embeddings for
movie genres in the last version of the model us-
ing an efficient and fast algorithm that updates
these embeddings in a matter of seconds. We uti-
lized multiple MovieLens datasets, starting with
the small 100k ratings for development and test-
ing, and eventually we trained the final model
on both the 25m ratings and the 32m ratings
datasets. Our implementation involves a custom
ALS framework that alternately updates the user,
movie, and genre factors and biases, optimizing
for regularized negative log likelihood function
and Root Mean Square Error (RMSE). The fi-
nal model demonstrates an effective approach to
recommendation with 0.77 RMSE on the 32m
dataset, balancing computational efficiency and
accuracy. Github

1. Introduction:
1.1. Problem Statement and Objective

In streaming and digital content, most movie-viewing pat-
terns follow a power law distribution. This means that a
handful of popular movies attract the majority of views and
ratings, while lesser-known films receive minimal engage-
ment and are not being exposed as a result of being at the
tail of that distribution. Without personalized recommenda-
tions, users face limited diversity in suggestions, primarily
seeing widely viewed content rather than films suited to

1African Institute for Mathematical Sciences (AIMS) South
Africa, 6 Melrose Road, Muizenberg 7975, Cape Town, South
Africa. Correspondence to: Asim Osman <Asim@aims.ac.za>.

their specific tastes. Hence the need for systems that models
user-movie interaction and give recommendations that are
particularly tailored to the taste and preferences of users
and give more exposure to less known movies, leading to
more user satisfaction and engagement. The aim of this
work is to to develop a personalized movie recommendation
system that learns meaningful and accurate embeddings for
the movies and the users using the user’s-movies interaction
patterns via explicit feedback. Hence learning the specific
preferences of every user and the properties of each movie
that will help provide great recommendations.

1.2. Background and past work

There are two main types of recommender systems strate-
gies, content based filtering, which suggests items to a user
based on the characteristics of the items they have previ-
ously interacted with, using metadata or descriptive fea-
tures associated with each item. It builds a user profile
that summarizes their information and their preferences and
then searches the database to identify similar items for this
user. This approach requires external information about the
movies and users, such as movie genres or the actors in the
movie and users demographics, age and gender information
that might not be easily available or easy to collect. This
would be great for music recommendations, as this kind of
information can be found, however, content-based filtering
has a significant drawback in that it relies solely on item
features to generate recommendations, which may not ac-
curately reflect a user’s preferences. For example, if a user
enjoys the movie ”Gaslight,” the system might suggest other
films by the same director or featuring the same actor, but
these may not align with the user’s specific interests, such
as particular plot elements or production styles. This limita-
tion means that the system cannot effectively differentiate
between a user’s likes and dislikes if the relevant features
are not captured in the item profiles. Consequently, recom-
mendations tend to be similar and may not fully satisfy the
user’s tastes.

An alternative approach that doesn’t require external meta-
data is collaborative filtering, which relies on past user be-
havior, such as watch history and movies ratings, rather than
explicit user profiles. because collaborative-based methods
draw recommendations from a pool of users who have simi-
lar likes to one given user, they can often recommend items

1



Recommendation System Using Collaborative filtering

that a user may have not considered, appears with different
features than a user’s previously liked items but that retain
a some unrepresented element that appeals to a user type
this approach can capture complex data aspects that content
filtering may miss. However, collaborative filtering faces
the ”cold start problem,” making it less effective for new
movies and users, where content filtering performs better.

The two primary areas of collaborative filtering are the
neighborhood methods and latent factor models. In neigh-
borhood methods, instead of using the content features of
items to determine what to recommend, it finds similar users
and recommends items that they like, this method has two
versions, user-user version and the item-item version. In the
user-user version, to estimate a user’s x rating of an item,
we will find all the users that are similar to x who rated
these items and calculate estimates based on their ratings for
that item, and the item-oriented approach predicts a user’s
preference for an item based on ratings of similar items by
the same user.

The latent factor models - in a general sense- tries to embed
all users and items as vectors in an n dimensional space
where similar items and users will appear close in that
space, and hence the recommendations are made based pri-
marily on distance between user vectors and items vectors,
these vectors capture complex relationship among users and
movies as they try to to explain the ratings by characteriz-
ing both items and users. One of the best implementations
of latent factors methods is Matrix Factorization (Koren
et al., 2009). this method maps the user-item interaction in
a sparse matrix, then decomposes this matrix to user factors
and movie factors.

Singular Value Decomposition (SVD) and Principal Com-
ponent Analysis (PCA) (Lü et al., 2012) were some of the
first matrix decomposition methods applied to recommender
systems, used to reduce the dimensionality of user-item ma-
trices while capturing key patterns. SVD, however, has
limitations in handling sparse data and cold starts.

Alternating Least Squares (ALS) emerged as a solution to
overcome some limitations of SVD. ALS decomposes the
user-item matrix into user and item factors, iteratively opti-
mizing each set of factors to minimize reconstruction error.
Research like Koren et al. (2009) popularized ALS in large-
scale settings, notably during the Netflix Prize competition

1.3. ALS in Large-Scale Recommender Systems

The use of ALS in large-scale systems was further explored
by Hu, Koren, and Volinsky (2008) in their implicit feedback
model, where they adapted ALS for implicit data, like clicks
or views. This work was crucial because it allowed ALS to
be used in cases where users don’t provide explicit ratings,
making it more versatile for real-world applications. it is

also used on a large scale in Xbox Recommender System,
which relies on implicit feedback, and runs on a large scale,
serving tens of millions of daily users.

2. Methodology
2.1. Dataset

I conducted experiments using widely used recommendation
systems benchmark datasets: MovieLens-100K (ML-100K),
MovieLens-25M (ML-25M), and MovieLens-32M (ML-
32M) (Harper & Konstan, 2015), the 100K ratings version
was used in the first stages of the model, and finally the 25M
and 32M versions were used to build the final version of the
recommender system. This dataset describes 5-star rating
and free-text tagging activity from MovieLens, a movie
recommendation service. It contains 32,000,204 ratings
and 2,000,072 tag applications across 87,585 movies with
additional genre information about every movie. Users were
selected at random for inclusion. All selected users had
rated at least 20 movies. The dataset is of a sparse nature
because of the limited number of ratings per user and item,
typical in real-world recommendation datasets,

0 5000 10000 15000 20000 25000 30000
Number of Movies Rated

100

101

102

103

104

105

Nu
m

be
r o

f U
se

rs

0 20000 40000 60000 80000 100000
Number of Users Who Rated

100

101

102

103

104

105

Nu
m

be
r o

f M
ov

ie
s

Figure 1: Histogram of User Degrees (Number of Movies
Rated per User) and Movie Degrees (Number of Use/rs per
Movie)

The analysis for this dataset in the above Figure 1 shows a

2



Recommendation System Using Collaborative filtering

typical power law distribution in both user activity (ratings
given) and movie popularity (ratings received) with a few
popular movies and highly active users accounting for most
of the interactions. This distribution motivates the need for
collaborative filtering to provide recommendations for the
long-tail items. Figure 2 shows better illustration of this
behavior on a log-log scale.

100 101 102 103 104

Degree (Number of Movies Rated)

100

101

102

103

Fr
eq

ue
nc

y

100 101 102 103 104 105

Degree (Number of Users)

100

101

102

103

104

Fr
eq

ue
nc

y

Figure 2: Log-log scale distributions showing degree pat-
terns of user and movie interactions. This pattern is typical
in collaborative filtering datasets and highlights the need for
a recommendation system that addresses both frequent and
infrequent participants.

Further Exploration of the MovieLens Dataset shows intrest-
ing user tendecies as ratings distributions tend to be rela-
tivly high, which is expected it movies platforms as users
tend to explicitly rate the movies they liked, and ignore the
movies the did not like. Figure 3 shows that certain rat-
ings—typically around the higher end, such as 4 or 5—are
likely given more frequently. This indicates a bias toward
higher ratings.

1 2 3 4 5
Rating

0

1

2

3

4

Fr
eq

ue
nc

y

1e7

Figure 3: Distribution of Movie Ratings

2.2. Data Preprocessing

Dataset Characteristics: This is a sparse and high
dimensional dataset, with the most important objective
being fast retrieval and efficient structure in terms of
clarity and use of memory. To handle this, I implemented
a specialized data-structures and indexing maps for the
ratings and genre information that ensure memory efficiency
and computational speed.

Efficient Data Structures for User and Movie Data: The
speed at which each data-point is retrieved and the type
of data structure used to store it are the to main factors
deciding the speed of the algorithm, I found Numpy object
arrays to be the most efficient, and I created two primary
data-structures:

• User-Indexed Structure: This array is organized by
user index (instead of ID) for efficient access during
user factor updates. Each entry contains a list of movies
rated by the user, as well as corresponding ratings. For
example, the first element corresponds to user index 0
and contains all the movies rated by that user.

• Movie-Indexed Structure: This array organizes rat-
ings by movie index, with each entry representing a
list of users who rated that specific movie, along with
the ratings they provided.

These structures rely on two dictionaries—userId to index
and movieId to index-which map original user and movie
IDs to array indices, making data retrieval easy and efficient.

Genre Information Encoding and Mapping: The Genre
information for each movie was provided as text, and since
there is a limited number of genres, I encoded each one
of them in a dictionary, each genre was assigned a unique
index (Action = 0, Adventure = 1, etc...). Then, for each
movie, a list of genres was retrieved from the metadata,

3



Recommendation System Using Collaborative filtering

converted to genre indices, and stored in movie genres. Us-
ing Numpy object arrays allowed varying length elements,
as each movie could have a unique number of associated
genres.

Advantages of Numpy Object Arrays: This data-
structure allowed for a very fast retrieval of information,
as there are libraries that can parallelize operations when
the data is stored in the form of only Numpy arrays leading
to enhanced performance, supporting quick updates of user
and movie factors during model training. In addition, this
method allowed for efficient memory usage as sparse data
is stored compactly, reducing memory requirements. .

2.3. The Recommendation Problem:

If we can represent a movie with a latent vector Vn and a
user with alatent vector Um, we can think of the recommen-
dation problem as an estimation of the rating that user m
would give to movie n, the simple likelihood [1].

p(rmn | um,vn) = N
(
rmn;u

T
mvn+, λ−1

)
(1)

The Regularized Alternating Least Squares (ALS) method
aims to minimize the error of the observed ratings while
including regularization terms to avoid overfitting. The
objective function for regularized ALS can be expressed as
in equation [2]:

L(U, V ) = λ
2

∑M
m=1

∑
n∈Ω(m)

(
rmn − uT

mvn

)2
+

τ
2

(∑M
m=1 ∥um∥2 +

∑N
n=1 ∥vn∥2

)
(2)

Here:
- um and vn are the user and item latent factor vectors, re-
spectively.
- rmn represents the observed rating of user m for item n.
- λ is the regularization parameter that penalizes the com-
plexity of the latent vectors to prevent overfitting.
- τ regularizes the magnitude of the user and item factors.

The ALS method alternates between fixing the user factors
to solve for item factors and vice versa, using a closed-form
solution at each step. This process continues iteratively until
convergence.

when trying to minimize this negative log likelihood, (ALS)
is one of the most effective ways to do that, The ALS al-
gorithm is particularly effective in handling the sparsity of
user-movie interaction data by decomposing the ratings ma-
trix into lower-dimensional latent factors.it is significantly

faster then gradient descent, and handle the large scale of
the data very well. In this work, I implemented a series of
ALS models to perform collaborative filtering, below are
the key models I implemented:

Bias-Only ALS Model:

The Bias-Only ALS model is a simplified variant that incor-
porates user and movies biases into the predictions without
using latent factors. The model accounts for global trends
and effects, such as average user ratings and item popularity.
By introducing biases, the model can adjust for systematic
differences in user behavior and item characteristics, im-
proving the overall performance in situations with inherent
rating tendencies. This model captures the inherent biases
in user and item ratings without using any latent factors. It
predicts the ratings based solely on user-specific and item-
specific biases.

ALS Model With User and Movie Latent Factors: This
model extending the Bias-Only model, this approach
incorporates latent factors for both users and movies to
better capture complex interactions between them. The
predicted rating is now modeled as the dot product between
the user and movie factors, in addition to the user and
movie biases. This model improves upon the Bias-Only
model by allowing for personalized recommendations. The
regularized ALS algorithm optimizes the user and movie
factors iteratively to minimize the error. the exact formula
for updating users, movies and biases will be detailed in
Appendex A. I also trained this model on the 25m and
32m dataset, delivering impressive resullts in terms of the
quality of recommendations. details of the derivations of
this models update equations are in appendex B.

ALS with Genre Features: Building upon the previous
model, this version incorporates genre information as addi-
tional features. Each genre is represented by a latent factor
vector, which influences the movie factor representation.
The model assigns a set of genre factors to each movie,
which are combined with the movie’s latent factors. This
allows for a more nuanced understanding of movie charac-
teristics. The prediction now includes terms that account for
the genre features, adding complexity but also potentially
increasing recommendation accuracy by leveraging
content-based information. Also more detailed derivation
for the update equations for this model willbe in Appenex C.

3. Experiments Setup and Implementation:
I primarily utilized Google Colab for the initial develop-
ment of this work. Subsequently, I transitioned to my local
machine, which is equipped with 8 cores, and used VSCode
to further enhance the speed and efficiency of the algorithm.

4



Recommendation System Using Collaborative filtering

Train Test Split: The first phase of the implementation
involved preparing the data for model training. In this step,
a randomized approach was adopted to partition 10% of the
dataset into training and testing sets. Specifically, I iterated
through the ‘ratings.csv‘ file row by row, and for each row,
I used a random variable to determine the assignment. If
the random variable’s value was less than 0.9, the data point
was allocated to the training set; otherwise, it was placed in
the test set.

Before partitioning, I preprocessed the ‘ratings‘ and
‘movies‘ DataFrames to ensure that each movie was as-
sociated with a unique index, which remained consistent
even if the movie or user appeared only in the test set. This
was accomplished by first creating a mapping between each
movie and a unique index, as well as a similar mapping for
users. I then used these mappings to add additional columns
to the DataFrame, allowing the indexing to be preserved
throughout the data splitting process.

Bias-Only Model Implementation

I implemented my initial algorithm, the Bias-Only ALS
model, as described in Algorithm 1. This model was trained
on the 100K, 25M, and 32M datasets. To determine the
optimal parameters λ and γ, I conducted a grid search. The
best parameter set was found to be λ = 1 and γ = 0.01.

When applied to the 32M dataset, this same parameter con-
figuration exhibited efficient convergence behavior. How-
ever, given that the model only needed to learn two variables,
there was limited complexity to capture, causing the algo-
rithm to converge within two or three epochs. The Root
Mean Square Error (RMSE) metric was used to evaluate the
performance and the goal was to minimize the error between
the observed and predicted ratings.

Algorithm 1 shows the working of bias only ALS:

Algorithm 1 Biases Only ALS Model

Initialize user biases = np.zeros(M)
Initialize item biases = np.zeros(N)
repeat

Loop over users:
Update user bias

Loop over items:
Update item bias

until Convergence

I used the naive approach with only for loops which was
enough to do many experiment using the small dataset, but
it took a considerable amount of time when using the 32m
dataset, so, it was clear that there was a need for more fast
implementation of the algorithm.

Users and Movies with Bias Model

In the initial stage of my implementation, I developed the
bias-only Alternating Least Squares (ALS) algorithm, as
illustrated in Algorithm 1. This model was trained using
datasets of varying sizes, specifically the 100k, 25M, and
32M MovieLens datasets. Through grid search, I deter-
mined the optimal regularization parameters to be λ = 1
and γ = 0.01. The bias-only model, despite its simplicity,
demonstrated rapid convergence, completing in just two to
three epochs due to the limited complexity of the parameters
involved.

Subsequently, I extended the model to incorporate user and
movie latent trait vectors, adopting a parallelized approach
to update these factors alternately, as described in Algo-
rithm 2. To enhance computational efficiency, I utilized
the Numba library, leveraging its Just-In-Time (JIT) com-
pilation capabilities for optimized numpy operations. This
optimization significantly reduced the training time from 15
minutes per epoch to just 13 seconds on the 32M dataset, al-
lowing for an extensive and efficient hyperparameter search.

In this advanced model, I found that setting the dimen-
sionality of the latent vectors to 25 or 30 yielded the best
results on the 32M dataset. Using a higher dimensionality
risked overfitting, while lower dimensionalities negatively
impacted the quality of recommendations. This balance
ensured the model’s robustness and maintained a high stan-
dard of predictive accuracy. The model was trained for 100
epochs, although there was no significant improvement in
the RMSE, but the model still leaarns as the negative log
likelihood decreases and model predictions become more
accurate with more epochs.

The Algorithm 2 pseudo code below shows how ALS works
by alternating between the users, movies and biases updates
until convergence

Algorithm 2 Structure of ALS Updates For Users, Movies
and Biases

repeat
Loop over users in parallel:

Update user bias
Update user trait vector u

Loop over Movies in parallel:
Update Movie bias
Update Movie trait vector v

until Convergence

Model with added Features

In the final stage of my project, I implemented the ALS
model by incorporating genre-based feature vectors, making
it a more robust and accurate in predictions. This model,
built upon the previously described user and movie factors,

5



Recommendation System Using Collaborative filtering

further integrated genre information to capture additional
contextual relationships, as illustrated in Algorithm ??.

To represent genres effectively, I initialized a set of latent
vectors for each of the 19 possible genres. For every movie, I
associated its corresponding genres using a one-dimensional
array. This allowed the model to account for genre influ-
ences in the recommendation process. During training, I
alternately updated the user, movie, and genre factors in par-
allel, leveraging the efficient Numba library for Just-In-Time
(JIT) compilation. This optimization not only maintained
the reduced training time but also facilitated efficient explo-
ration of the parameter space enabling for training to go for
100 Epochs.

Extensive grid search revealed that the inclusion of genre
features improved the model’s predictive accuracy without
significantly increasing the risk of overfitting. The best con-
figuration involved latent vectors of 25 dimensions, similar
to the user and movie factors. This comprehensive approach
ensured that the model delivered high-quality, personalized
recommendations while effectively capturing the complex-
ity inherent in user-movie-genre interactions. Algorithm 3
Psudo code illustrates how ALS works by updating a set of
factors and features :

Algorithm 3 ALS with User, Item, and Feature Factors

Initialize user biases b(u), item biases b(i), user vectors u,
item vectors v, and feature vectors f
repeat

for each user m in 0 to M − 1 do
Update user bias b(u)m

Update user vector um

end for
for each item n in 0 to N − 1 do

Update item bias b(i)n

Update item vector vn

end for
for each feature i in 0 to num features−1 do

Update feature vector fi
end for

until convergence

4. Results
This section discusses the outcomes of our experiments,
as we will discuss the results of each of the three models
as the primary objective was to enhance the quality of
personalized movie recommendations while maintaining
computational efficiency. Tto assess the performance of
these models. The Root Mean Square Error (RMSE) was
the primary metric for quantifying the accuracy of our
models’ predictions compared to the actual ratings. A lower
RMSE value indicates higher accuracy in matching user

preferences. The RMSE formula we used is as follows:

RMSE =
√

1
N

∑U
u=1

∑nu

i=1 (rui − (vi · uu + bu + bi))
2

where:
- vi is the movie’s latent factor vector.
- uu is the user’s latent factor vector.
- bu is the user’s bias term.
- bi is the movie’s bias term.
In case of bias only models, we just set U.V to zero
This equation reflects the process of computing the squared
errors between the actual and predicted ratings, averaging
them, and taking the square root to get the RMSE. This
formula computes the squared differences between the ac-
tual ratings and the predicted ratings (using only the bias
terms for users and movies), averages them over all ratings,
and then takes the square root to obtain the RMSE. Let me
know if you need further clarification or adjustments! The
following sections detail the performance of each model,
highlighting how the inclusion of trait vectors and additional
features impacted both the recommendation quality. Visual
representations, including convergence plots and RMSE
comparisons, are provided to illustrate the models’ perfor-
mance differences clearly.

4.1. Bias-Only Model

The key insight in the bias only model is that they tend to
converge (or diverge) very fast, it usually takes two or three
epochs to reach a minima, wh see similar pattern in both
results of the 100k dataset and the 32m dataset. figure 4 and
5 illustrate the performance of the model on both training
and test set for different datasets.

0 2 4 6 8
Iterations

28800

29000

29200

29400

29600

29800

30000

30200

Tr
ai

ni
ng

 N
eg

at
iv

e 
lo

g 
lik

el
ih

oo
d

0 2 4 6 8
Iterations

3200

3225

3250

3275

3300

3325

3350

3375

Va
lid

at
io

n 
Ne

ga
tiv

e 
lo

g 
lik

el
ih

oo
d

Figure 4: Figure shows the loss or the negative likelihood
of the 100k bias only model

6



Recommendation System Using Collaborative filtering

0 2 4 6 8
Iterations

1.04

1.05

1.06

1.07

1.08

lo
ss

1e7

0 2 4 6 8
Iterations

1.18

1.19

1.20

1.21

1.22

1.23

lo
ss

1e6

Figure 5: Figure shows the loss or the negative likelihood
of the 32m bias only model
As seen in the figures, both models are showing a mono-
tonic decrease in both training and validation losses, and
converges after only two iterations.

0 2 4 6 8
Iterations

0.790

0.795

0.800

0.805

0.810

0.815

RM
SE

Figure 6: Figure shows the RMSE 100k bias only model

0 2 4 6 8
Iterations

0.850

0.855

0.860

0.865

0.870

RM
SE

Figure 7: Figure shows the RMSE for the 32m bias only
model
The RMSE evaluation, follows the same patterns.

4.2. Users and Movies with Bias Model

For this Model , the most relevant Experiments where done
on the 32m dataset, In which we achieved an impressive
0.7776 RMSE on validation set, coupled with qualitatively
great recommendations. The model was trained for 100
epochs, with a configuration of λ = 1 and γ = 0.001 and τ=
10, and latent factor vector of dimension of 30. figure ??
shows the negative log likelihood of the model decreasing
monotonically as training continue.

Figure 8: Figure shows the loss or the negative likelihood
of the 32m model

and as for the RMSE for the training and test sets, figure
9 illustrates the decrease of the rmse over time till conver-
gence.

Figure 9: Figure shows the RMSE of the 32m model

Users and Movies with Bias Model use case with a fake
user To qualitatively evaluate this model, I created a dummy
user which only rated one movie, I infered the user vector
U for this user along with his bias, and multiplied this latent
vector with every movie in the latent movie factors V, and
sorted out the results of multiplying each movie with this
user in decsending order to see which movies ill be recom-

7



Recommendation System Using Collaborative filtering

mended for this user. an Example of inference of the model
is given in the following Tables.

Title Genre
Toy Story 2 (1999) Adventure—Animation—Children—Comedy—Fantasy
Monsters, Inc. (2001) Adventure—Animation—Children—Comedy—Fantasy
Finding Nemo (2003) Adventure—Animation—Children—Comedy
Toy Story 3 (2010) Adventure—Animation—Children—Comedy—Fantasy—IMAX
Incredibles, The (2004) Action—Adventure—Animation—Children—Comedy
Bug’s Life, A (1998) Adventure—Animation—Children—Comedy
Aladdin (1992) Adventure—Animation—Children—Comedy—Musical
Lion King, The (1994) Adventure—Animation—Children—Drama—Musical—IMAX
Shrek (2001) Adventure—Animation—Children—Comedy—Fantasy
Up (2009) Adventure—Animation—Children—Drama
Beauty and the Beast (1991) Animation—Children—Fantasy—Musical—Romance—IMAX

Table 1: User Liked Toy Story 1, This is the Top 10 Recom-
mendations according to the 32m Model

Title Genre
Saw II (2005) Horror—Thriller
Saw (2003) Crime—Horror
Saw III (2006) Crime—Horror—Thriller
Ring, The (2002) Horror—Mystery—Thriller
Saw IV (2007) Crime—Horror—Thriller
Scream (1996) Comedy—Horror—Mystery—Thriller
Seven (a.k.a. Se7en) (1995) Mystery—Thriller
Requiem for a Dream (2000) Drama
Halloween (1978) Horror
Nightmare on Elm Street, A (1984) Horror—Thriller

Table 2: List of Recommendations for User who liked ”Saw”
Movie and Their Genres

Visualizing Movies Embedding in a 2D Space

References
Harper, F. M. and Konstan, J. A. The movielens

datasets: History and context. ACM Trans. Interact.
Intell. Syst., 5(4), December 2015. ISSN 2160-6455.
doi: 10.1145/2827872. URL https://doi.org/10.
1145/2827872.

Koren, Y., Bell, R., and Volinsky, C. Matrix factorization
techniques for recommender systems. Computer, 42(8):
30–37, 2009.

Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K.,
and Zhou, T. Recommender systems. Physics reports,
519(1):1–49, 2012.

8

https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872


Recommendation System Using Collaborative filtering

A. You can have an appendix here.

9


